structure
EDT0LGrammar.UnionData
{T : Type u_1}
{N₀ : Type u_2}
{H₀ : Type u_3}
{N₁ : Type u_4}
{H₁ : Type u_5}
[Fintype N₀]
[Fintype H₀]
[Fintype N₁]
[Fintype H₁]
:
Type (max (max (max (max u_1 u_2) u_3) u_4) u_5)
- E₀ : EDT0LGrammar T N₀ H₀
- E₁ : EDT0LGrammar T N₁ H₁
Instances For
Equations
Instances For
Equations
Instances For
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₀_terminal
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(t : T)
:
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₁_terminal
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(t : T)
:
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₀_nonterminal
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(n : N₀)
:
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₁_nonterminal
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(n : N₁)
:
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₀_terminal_word
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(w : List T)
:
@[simp]
theorem
EDT0LGrammar.UnionData.extend_alphabet₁_terminal_word
{T : Type u_6}
{N₀ : Type u_7}
{N₁ : Type u_8}
(w : List T)
:
theorem
EDT0LGrammar.UnionData.left_rewrites
{T : Type u_1}
{N₀ : Type u_2}
{H₀ : Type u_3}
{N₁ : Type u_4}
{H₁ : Type u_5}
[Fintype N₀]
[Fintype H₀]
[Fintype N₁]
[Fintype H₁]
(𝓖 : UnionData)
(w w' : List (Symbol T ((N₀ ⊕ N₁) ⊕ Unit)))
(h : ∃ (u : List (Symbol T N₀)), w = List.map extend_alphabet₀ u ∧ 𝓖.E₀.Generates u)
:
theorem
EDT0LGrammar.UnionData.right_rewrites
{T : Type u_1}
{N₀ : Type u_2}
{H₀ : Type u_3}
{N₁ : Type u_4}
{H₁ : Type u_5}
[Fintype N₀]
[Fintype H₀]
[Fintype N₁]
[Fintype H₁]
(𝓖 : UnionData)
(w w' : List (Symbol T ((N₀ ⊕ N₁) ⊕ Unit)))
(h : ∃ (u : List (Symbol T N₁)), w = List.map extend_alphabet₁ u ∧ 𝓖.E₁.Generates u)
: