def
EDT0LGrammar.DeriveSequence
{T : Type u_1}
{N : Type u_2}
{H : Type u_3}
[Fintype H]
[Fintype N]
(E : EDT0LGrammar T N H)
(s : List H)
(w : List (Symbol T N))
:
Equations
- E.DeriveSequence s w = List.foldl (fun (w' : List (Symbol T N)) (τ : H) => E.RewriteWord τ w') w s
Instances For
@[simp]
theorem
EDT0LGrammar.DeriveSequence.derives_seq_refl
{T : Type u_1}
{N : Type u_2}
{H : Type u_3}
[Fintype H]
[Fintype N]
(E : EDT0LGrammar T N H)
(w : List (Symbol T N))
:
theorem
EDT0LGrammar.DeriveSequence.rewrite_word_iff_derive_seq_singleton
{T : Type u_1}
{N : Type u_2}
{H : Type u_3}
[Fintype H]
[Fintype N]
(E : EDT0LGrammar T N H)
(w : List (Symbol T N))
(τ : H)
:
theorem
EDT0LGrammar.DeriveSequence.derives_iff_derive_seq
{T : Type u_1}
{N : Type u_2}
{H : Type u_3}
[Fintype H]
[Fintype N]
(E : EDT0LGrammar T N H)
(w w' : List (Symbol T N))
: