Documentation

LSystems.EDT0L.DeriveSequence

def EDT0LGrammar.DeriveSequence {T : Type u_1} {N : Type u_2} {H : Type u_3} [Fintype H] [Fintype N] (E : EDT0LGrammar T N H) (s : List H) (w : List (Symbol T N)) :
List (Symbol T N)
Equations
Instances For
    @[simp]
    theorem EDT0LGrammar.DeriveSequence.derives_seq_refl {T : Type u_1} {N : Type u_2} {H : Type u_3} [Fintype H] [Fintype N] (E : EDT0LGrammar T N H) (w : List (Symbol T N)) :
    theorem EDT0LGrammar.DeriveSequence.rewrite_word_iff_derive_seq_singleton {T : Type u_1} {N : Type u_2} {H : Type u_3} [Fintype H] [Fintype N] (E : EDT0LGrammar T N H) (w : List (Symbol T N)) (τ : H) :
    theorem EDT0LGrammar.DeriveSequence.rewrites_iff_derive_seq_singleton {T : Type u_1} {N : Type u_2} {H : Type u_3} [Fintype H] [Fintype N] (E : EDT0LGrammar T N H) (w w' : List (Symbol T N)) :
    E.Rewrites w w' ∃ (τ : H), E.DeriveSequence [τ] w = w'
    theorem EDT0LGrammar.DeriveSequence.derives_iff_derive_seq {T : Type u_1} {N : Type u_2} {H : Type u_3} [Fintype H] [Fintype N] (E : EDT0LGrammar T N H) (w w' : List (Symbol T N)) :
    E.Derives w w' ∃ (s : List H), E.DeriveSequence s w = w'