toArray #
next? #
dropLast #
set #
tail #
eraseP #
erase #
findIdx? #
replaceF #
disjoint #
union #
@[simp]
inter #
product #
monadic operations #
theorem
List.forIn_eq_bindList
{m : Type u_1 → Type u_2}
{α : Type u_3}
{β : Type u_1}
[Monad m]
[LawfulMonad m]
(f : α → β → m (ForInStep β))
(l : List α)
(init : β)
:
diff #
drop #
Pairwise #
IsChain #
@[deprecated List.rel_of_isChain_cons_cons (since := "2025-09-19")]
theorem
List.rel_of_chain_cons
{α✝ : Type u_1}
{R : α✝ → α✝ → Prop}
{a b : α✝}
{l : List α✝}
(p : IsChain R (a :: b :: l))
:
R a b
Alias of List.rel_of_isChain_cons_cons
.
@[deprecated List.IsChain.imp (since := "2025-09-19")]
theorem
List.Chain.imp
{α : Type u_1}
{R S : α → α → Prop}
{l : List α}
(H : ∀ ⦃a b : α⦄, R a b → S a b)
(p : IsChain R l)
:
IsChain S l
Alias of List.IsChain.imp
.
@[deprecated List.Pairwise.isChain (since := "2025-09-19")]
theorem
List.Pairwise.chain
{α✝ : Type u_1}
{R : α✝ → α✝ → Prop}
{l : List α✝}
(p : Pairwise R l)
:
IsChain R l
Alias of List.Pairwise.isChain
.
range', range #
indexOf and indexesOf #
insertP #
dropPrefix?, dropSuffix?, dropInfix? #
@[simp]
@[simp]
@[irreducible]
IsPrefixOf?, IsSuffixOf? #
@[simp]
@[simp]